Arbeitspapier

A data model inference algorithm for schemaless process modeling

Mobile devices have become ubiquitous not only in the consumer domain but also support the digitalization of business operations though business apps. Many frameworks for programming cross-platform apps have been proposed, but only few modeling approaches exist that focus on platform-agnostic representations of mobile apps. In addition, app development activities are almost exclusively performed by software developers, while domain experts are rarely involved in the actual app creation beyond requirements engineering phases. This work concentrates on a model-driven approach to app development that is also comprehensible to non-technical users. With the help of a graphical domain-specific language, data model, view representation, business logic, and user interactions are modeled in a common model from a process perspective. To enable such an approach from a technical point of view, an inference mechanism is presented that merges multiple partial data models into a global specification. Through model transformations, native business apps can then be generated for multiple platforms without manual programming.

Sprache
Englisch

Erschienen in
Series: ERCIS Working Paper ; No. 29

Klassifikation
Management
Thema
Graphical DSL
Mobile Application
Business App
Model-driven software development
Data model inference

Ereignis
Geistige Schöpfung
(wer)
Rieger, Christoph
Ereignis
Veröffentlichung
(wer)
Westfälische Wilhelms-Universität Münster, European Research Center for Information Systems (ERCIS)
(wo)
Münster
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Rieger, Christoph
  • Westfälische Wilhelms-Universität Münster, European Research Center for Information Systems (ERCIS)

Entstanden

  • 2017

Ähnliche Objekte (12)