SeaFlame: Communication-Efficient Secure Aggregation for Federated Learning against Malicious Entities

Abstract: Secure aggregation is a popular solution to ensuring privacy for federated learning. However, when considering malicious participants in secure aggregation, it is difficult to achieve both privacy and high efficiency. Therefore, we propose SeaFlame, a communication-efficient secure aggregation protocol against malicious participants. Inspired by the state-of-the-art work, ELSA, SeaFlame also utilizes two non-colluding servers to ensure privacy against malicious entities and provide defenses against boosted gradients. Crucially, to improve communication efficiency, SeaFlame uses arithmetic sharing together with arithmetic-to-arithmetic share conversion to reduce client communication, and uses the random linear combination to reduce server communication. Security analysis proves that our SeaFlame guarantees privacy against malicious clients colluding with one malicious server. Experimental evaluation demonstrates that, compared to ELSA, SeaFlame optimizes communication by up to 10.5,.... https://tches.iacr.org/index.php/TCHES/article/view/12042

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
SeaFlame: Communication-Efficient Secure Aggregation for Federated Learning against Malicious Entities ; volume:2025 ; number:2 ; year:2025
IACR transactions on cryptographic hardware and embedded systems ; 2025, Heft 2 (2025)

Urheber
Tang, Jinling
Xu, Haixia
Liao, Huimei
Zhou, Yinchang

DOI
10.46586/tches.v2025.i2.69-93
URN
urn:nbn:de:101:1-2503121801246.526179872478
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Tang, Jinling
  • Xu, Haixia
  • Liao, Huimei
  • Zhou, Yinchang

Ähnliche Objekte (12)