Arbeitspapier

Local adaptive multiplicative error models for high-frequency forecasts

We propose a local adaptive multiplicative error model (MEM) accommodating timevarying parameters. MEM parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local windows is selected, yielding adaptive forecasts at each point in time. Analyzing one-minute cumulative trading volumes of five large NASDAQ stocks in 2008, we show that local windows of approximately 3 to 4 hours are reasonable to capture parameter variations while balancing modelling bias and estimation (in)efficiency. In forecasting, the proposed adaptive approach significantly outperforms a MEM where local estimation windows are fixed on an ad hoc basis.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2012-031

Klassifikation
Wirtschaft
Duration Analysis; Optimal Timing Strategies
Model Construction and Estimation
Forecasting Models; Simulation Methods
Asset Pricing; Trading Volume; Bond Interest Rates
Financial Forecasting and Simulation
Thema
multiplicative error model
local adaptive modelling
high-frequency processes
trading volume
forecasting
Statistische Bestandsanalyse
Prognoseverfahren
Theorie
Schätzung
Börsenkurs
USA

Ereignis
Geistige Schöpfung
(wer)
Härdle, Wolfgang Karl
Hautsch, Nikolaus
Mihoci, Andrija
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Härdle, Wolfgang Karl
  • Hautsch, Nikolaus
  • Mihoci, Andrija
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2012

Ähnliche Objekte (12)