Sequential conditional correlations: Inference and evaluation

Abstract: This paper presents a new approach to the modeling of conditional correlation matrices within the multivariate GARCH framework. The procedure, which consists in breaking the matrix into the product of a sequence of matrices with desirable characteristics, in effect converts a highly dimensional and intractable optimization problem into a series of simple and feasible estimations. This in turn allows for richer parameterizations and complex functional forms for the single components. An empirical application involving the conditional second moments of 69 selected stocks from the NASDAQ100 shows how the new procedure results in strikingly accurate measures of the conditional correlations

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Postprint
begutachtet (peer reviewed)
In: Journal of Econometrics ; 153 (2009) 2 ; 122-132

Classification
Wirtschaft

Event
Veröffentlichung
(where)
Mannheim
(when)
2009
Creator
Palandri, Alessandro

DOI
10.1016/j.jeconom.2009.05.002
URN
urn:nbn:de:0168-ssoar-251154
Rights
Open Access unbekannt; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:25 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Palandri, Alessandro

Time of origin

  • 2009

Other Objects (12)