The sequential Henstock-Kurzweil delta integral on time scales

Abstract: In this study, the basic theory of the sequential Henstock-Kurzweil delta integral on time scales will be discussed. First, we give the notion and the elementary properties of this integral; then we show the equivalence of the Henstock-Kurzweil delta integral and the sequential Henstock-Kurzweil delta integral on time scales. In addition, we consider the Cauchy criterion and the Fundamental Theorems of Calculus. Finally, we prove Henstock’s lemma and give some convergence theorems. As an application, we consider the existence theorem of a kind of functional dynamic equations.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
The sequential Henstock-Kurzweil delta integral on time scales ; volume:57 ; number:1 ; year:2024 ; extent:23
Demonstratio mathematica ; 57, Heft 1 (2024) (gesamt 23)

Creator
Liu, Yang
Shao, Yabin

DOI
10.1515/dema-2024-0056
URN
urn:nbn:de:101:1-2411091607586.047373824788
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Liu, Yang
  • Shao, Yabin

Other Objects (12)