The sequential Henstock-Kurzweil delta integral on time scales
Abstract: In this study, the basic theory of the sequential Henstock-Kurzweil delta integral on time scales will be discussed. First, we give the notion and the elementary properties of this integral; then we show the equivalence of the Henstock-Kurzweil delta integral and the sequential Henstock-Kurzweil delta integral on time scales. In addition, we consider the Cauchy criterion and the Fundamental Theorems of Calculus. Finally, we prove Henstock’s lemma and give some convergence theorems. As an application, we consider the existence theorem of a kind of functional dynamic equations.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
The sequential Henstock-Kurzweil delta integral on time scales ; volume:57 ; number:1 ; year:2024 ; extent:23
Demonstratio mathematica ; 57, Heft 1 (2024) (gesamt 23)
- Creator
-
Liu, Yang
Shao, Yabin
- DOI
-
10.1515/dema-2024-0056
- URN
-
urn:nbn:de:101:1-2411091607586.047373824788
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:31 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Liu, Yang
- Shao, Yabin