One-dimensional inverse problems of determining the kernel of the integro-differential heat equation in a bounded domain
Abstract: The integro-differential equation of heat conduction with the time-convolution integral on the right side is considered. The direct problem is the initial-boundary problem for this integro-differential equation. Two inverse problems are studied for this direct problem consisting in determining a kernel of the integral member on two given additional conditions with respect to the solution of the direct problems, respectively. The problems are replaced with the equivalent system of the integral equations with respect to unknown functions and on the basis of contractive mapping the unique solvability inverse problem.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
One-dimensional inverse problems of determining the kernel of the integro-differential heat equation in a bounded domain ; volume:10 ; number:1 ; year:2023 ; extent:13
Nonautonomous dynamical systems ; 10, Heft 1 (2023) (gesamt 13)
- Creator
-
Durdiev, Durdimurod Kalandarovich
Jumaev, Jonibek Jamolovich
- DOI
-
10.1515/msds-2022-0163
- URN
-
urn:nbn:de:101:1-2023033014050246863442
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:46 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Durdiev, Durdimurod Kalandarovich
- Jumaev, Jonibek Jamolovich