Optical Nanofiber Skins for Multifunctional Humanoid Tactility

Humanoid tactility has been boosting robotic intelligence in object recognition, dexterous manipulation, and human–robot interaction. For many artificial tactile sensors, especially those based on optical principles, inflexibility, bulkiness, and monomodality limit their potential to function as humanoid skins. Herein, by embedding lab‐made optical nanofibers (ONFs) into elastomeric films, soft, flexible, thin (around 500 μm, similar to human skin), and multimodal (force and thermosensitive) robotic skins are achieved. These superior characteristics arise from the low flexural rigidity and large evanescent field of ONFs, due to their subwavelength diameters (down to 450 nm). By tuning light wavelength, ONF diameter, and skin thickness, variable sensitivities and sensing ranges for both force and temperature are reported. Depending on different sensing requirements, special modules can be further assembled on the ONF skins for various surface properties, including hardness, texture, and thermal conductivity. The ONF skins can enable a commercial robot to emulate human behaviors, including adaptive grasping of flimsy objects, contactless temperature measurement, and even the perception of leaf veins. It is anticipated that these ONF skins could offer a unique solution in multiple intelligent systems such as robotics, prosthetics, human–machine interface and wearable devices.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Optical Nanofiber Skins for Multifunctional Humanoid Tactility ; day:18 ; month:01 ; year:2023 ; extent:11
Advanced intelligent systems ; (18.01.2023) (gesamt 11)

Creator
Tang, Yao
Yu, Longteng
Pan, Jing
Yao, Ni
Geng, Weidong
Li, Xiong
Tong, Limin
Zhang, Lei
Zhang, Zhengyou
Song, Aiguo

DOI
10.1002/aisy.202200203
URN
urn:nbn:de:101:1-2023011914120588893760
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:24 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Tang, Yao
  • Yu, Longteng
  • Pan, Jing
  • Yao, Ni
  • Geng, Weidong
  • Li, Xiong
  • Tong, Limin
  • Zhang, Lei
  • Zhang, Zhengyou
  • Song, Aiguo

Other Objects (12)