Strong convergence of an inertial extrapolation method for a split system of minimization problems
Abstract: In this article, we propose an inertial extrapolation-type algorithm for solving split system of minimization problems: finding a common minimizer point of a finite family of proper, lower semicontinuous convex functions and whose image under a linear transformation is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. The strong convergence theorem is given in such a way that the step sizes of our algorithm are selected without the need for any prior information about the operator norm. The results obtained in this article improve and extend many recent ones in the literature. Finally, we give one numerical example to demonstrate the efficiency and implementation of our proposed algorithm.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Strong convergence of an inertial extrapolation method for a split system of minimization problems ; volume:53 ; number:1 ; year:2020 ; pages:332-351 ; extent:20
Demonstratio mathematica ; 53, Heft 1 (2020), 332-351 (gesamt 20)
- Creator
-
Gebrie, Anteneh Getachew
Wangkeeree, Rabian
- DOI
-
10.1515/dema-2020-0025
- URN
-
urn:nbn:de:101:1-2411181518014.511414957479
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:35 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Gebrie, Anteneh Getachew
- Wangkeeree, Rabian