Artikel

Design of a dual-input cross-connected charge pump utilizing scavenged energy

This paper presents a novel dual-input cross-connected charge pump utilizing scavenged energy. The proposed converter has two input sources: a battery input and a scavenged energy input. Unlike existing charge pumps, the proposed converter alleviates the energy consumed in a battery source by utilizing the scavenged energy. Therefore, the proposed converter can extend the lifetime of a battery source. Furthermore, the cross-connected structure offers not only higher voltage gain but also faster response speed than existing charge pumps. Through theoretical analysis and simulation program with integrated circuit emphasis (SPICE) simulation, the proposed converter demonstrates high power efficiency and high output voltage, where the proposed converter is compared with series-parallel converter, traditional charge pump, and Fibonacci converter. Concretely, about 90% power efficiency can be achieved by the proposed converter when the output power is 15 μW, and the settling time is less than 19 μS when the output load is 500kΩ. Furthermore, the feasibility of the proposed converter is confirmed by breadboard experiments, where the experimental circuit is built with commercially available ICs.

Language
Englisch

Bibliographic citation
Journal: Energy Reports ; ISSN: 2352-4847 ; Volume: 6 ; Year: 2020 ; Issue: 2 ; Pages: 228-234 ; Amsterdam: Elsevier

Classification
Wirtschaft
Subject
Charge pump
Cross-connected structure
Dual inputs
Energy harvesting
Inductor-less converters

Event
Geistige Schöpfung
(who)
Eguchi, Kei
Kozono, Yutaka
Ishibashi, Takaaki
Asadi, Farzin
Event
Veröffentlichung
(who)
Elsevier
(where)
Amsterdam
(when)
2020

DOI
doi:10.1016/j.egyr.2019.11.067
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Eguchi, Kei
  • Kozono, Yutaka
  • Ishibashi, Takaaki
  • Asadi, Farzin
  • Elsevier

Time of origin

  • 2020

Other Objects (12)