Utilizing Artificial Neural Networks and Combined Capacitance-Based Sensors to Predict Void Fraction in Two-Phase Annular Fluids Regardless of Liquid Phase Type
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource, 12 Seiten
- Language
-
Englisch
- Bibliographic citation
-
In: IEEE access(11), S.143745-143756 - ISSN 2169-3536
In: Institute of Electrical and Electronics Engineers (IEEE), New York, NY
- Event
-
Veröffentlichung
- (where)
-
Jena
- (who)
-
Friedrich-Schiller-Universität Jena
- (when)
-
2023
- Creator
-
Al-Fayoumi, Mustafa A.
Al-Mimi, Hani Mahmoud
Veisi, Aryan
Al-Aqrabi, Hussain
Daoud, Mohammad Sh.
Eftekhari-Zadeh, Ehsan
- DOI
-
10.1109/ACCESS.2023.3340127
- URN
-
urn:nbn:de:101:1-2407170216197.866605156933
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 11:03 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Al-Fayoumi, Mustafa A.
- Al-Mimi, Hani Mahmoud
- Veisi, Aryan
- Al-Aqrabi, Hussain
- Daoud, Mohammad Sh.
- Eftekhari-Zadeh, Ehsan
- Friedrich-Schiller-Universität Jena
Time of origin
- 2023