Utilizing Artificial Neural Networks and Combined Capacitance-Based Sensors to Predict Void Fraction in Two-Phase Annular Fluids Regardless of Liquid Phase Type

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource, 12 Seiten
Language
Englisch

Bibliographic citation
In: IEEE access(11), S.143745-143756 - ISSN 2169-3536
In: Institute of Electrical and Electronics Engineers (IEEE), New York, NY

Event
Veröffentlichung
(where)
Jena
(who)
Friedrich-Schiller-Universität Jena
(when)
2023
Creator
Al-Fayoumi, Mustafa A.
Al-Mimi, Hani Mahmoud
Veisi, Aryan
Al-Aqrabi, Hussain
Daoud, Mohammad Sh.
Eftekhari-Zadeh, Ehsan

DOI
10.1109/ACCESS.2023.3340127
URN
urn:nbn:de:101:1-2407170216197.866605156933
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:03 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Al-Fayoumi, Mustafa A.
  • Al-Mimi, Hani Mahmoud
  • Veisi, Aryan
  • Al-Aqrabi, Hussain
  • Daoud, Mohammad Sh.
  • Eftekhari-Zadeh, Ehsan
  • Friedrich-Schiller-Universität Jena

Time of origin

  • 2023

Other Objects (12)