Artikel

Friends and enemies: A model of signed network formation

I propose a simple model of signed network formation, where agents make friends to extract payoffs from weaker enemies. The model thereby accounts for the interplay between friendship and alliance on one hand and enmity and antagonism on the other. Nash equilibrium configurations are such that either everyone is friends with everyone or agents can be partitioned into different sets, where agents within the same set are friends and agents in different sets are enemies. Any strong Nash equilibrium must be such that a single agent is in an antagonistic relationship with everyone else. Furthermore, I show that Nash equilibria cannot be Pareto ranked. This paper offers a game-theoretic foundation for a large body of work on signed networks, called structural balance theory, which has been studied in sociology, social psychology, bullying, international relations, and applied physics. The paper also contributes to the literature on contests and economics of conflict.

Sprache
Englisch

Erschienen in
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 12 ; Year: 2017 ; Issue: 3 ; Pages: 1057-1087 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Conflict; Conflict Resolution; Alliances; Revolutions
Network Formation and Analysis: Theory
International Conflicts; Negotiations; Sanctions
Thema
Signed network formation
structural balance
contest success function
bullying
economics of conflict
international relations

Ereignis
Geistige Schöpfung
(wer)
Hiller, Timo
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2017

DOI
doi:10.3982/TE1937
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hiller, Timo
  • The Econometric Society

Entstanden

  • 2017

Ähnliche Objekte (12)