Arbeitspapier

Model order selection in seasonal/cyclical long memory models

We propose an automatic model order selection procedure for k-factor GARMA processes. The procedure is based on sequential tests of the maximum of the periodogram and semiparametric estimators of the model parameters. As a byproduct, we introduce a generalized version of Walker's large sample g-test that allows to test for persistent periodicity in stationary ARMA processes. Our simulation studies show that the procedure performs well in identifying the correct model order under various circumstances. An application to Californian electricity load data illustrates its value in empirical analyses and allows new insights into the periodicity of this process that has been subject of several forecasting exercises.

Language
Englisch

Bibliographic citation
Series: Diskussionsbeitrag ; No. 535

Classification
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Model Evaluation, Validation, and Selection
Subject
Seasonal Long Memory
k-factor GARMA processes
Model selection
Electricity loads

Event
Geistige Schöpfung
(who)
Leschinski, Christian
Sibbertsen, Philipp
Event
Veröffentlichung
(who)
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
(where)
Hannover
(when)
2014

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Leschinski, Christian
  • Sibbertsen, Philipp
  • Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Time of origin

  • 2014

Other Objects (12)