Arbeitspapier

Nonparametric identification of dynamic models with unobserved state variables

We consider the identification of a Markov process {Wt,Xt*} for t = 1, 2, ... , T when only {Wt} for t = 1, 2, ... , T is observed. In structural dynamic models, Wt denotes the sequence of choice variables and observed state variables of an optimizing agent, while Xt* denotes the sequence of serially correlated unobserved state variables. The Markov setting allows the distribution of the unobserved state variable Xt* to depend on Wt-1 and Xt-1*. We show that the joint distribution f Wt, Xt* | Wt-1, Xt-1* is identified from the observed distribution f Wt+1, Wt | Wt-1, Wt-2, Wt-3 under reasonable assumptions. Identification of f Wt, Xt*, Wt-1, Xt-1* is a crucial input in methodologies for estimating dynamic models based on the conditional-choice-probability (CCP) approach pioneered by Hotz and Miller.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 543

Klassifikation
Wirtschaft
Thema
Markovscher Prozess
Ökonometrie

Ereignis
Geistige Schöpfung
(wer)
Hu, Yingyao
Shum, Matthew
Ereignis
Veröffentlichung
(wer)
The Johns Hopkins University, Department of Economics
(wo)
Baltimore, MD
(wann)
2008

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hu, Yingyao
  • Shum, Matthew
  • The Johns Hopkins University, Department of Economics

Entstanden

  • 2008

Ähnliche Objekte (12)