Obtaining higher-order Galerkin accuracy when the boundary is polygonally approximated

Abstract: Inspired by the methods developed in J. H. Bramble, T. Dupont, and V. Thomée (“Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections,” Math. Comput., vol. 26, no. 120, pp. 869–879, 1972), we introduce a new technique that yields a symmetric formulation and has similar performance. The new method is based on a Robin-type problem on an approximate polygonal domain. Optimal error estimates in the energy norm are proved for piecewise quadratics and cubics. We provide numerical experiments that show our theoretical results are sharp.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Obtaining higher-order Galerkin accuracy when the boundary is polygonally approximated ; volume:33 ; number:1 ; year:2025 ; pages:55-86 ; extent:32
Journal of numerical mathematics ; 33, Heft 1 (2025), 55-86 (gesamt 32)

Creator
Dupont, Todd
Guzmán, Johnny
Scott, L. Ridgway

DOI
10.1515/jnma-2023-0135
URN
urn:nbn:de:101:1-2503010514211.948253435584
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:36 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Dupont, Todd
  • Guzmán, Johnny
  • Scott, L. Ridgway

Other Objects (12)