Arbeitspapier

Calculation of LTC Premiums based on direct estimates of transition probabilities

In this paper we model the life-history of LTC patients using a Markovian multi-state model in order to calculate premiums for a given LTC-plan. Instead of estimating the transition intensities in this model we use the approach suggested by Andersen et al. (2003) for a direct estimation of the transition probabilities. Based on the Aalen-Johansen estimator, an almost unbiased estimator for the transition matrix of a Markovian multi-state model, we calculate so-called pseudo-values, known from Jackknife methods. Further, we assume that the relationship between these pseudo-values and the covariates of our data are given by a GLM with the logit as link-function. Since the GLMs do not allow for correlation between successive observations we use instead the Generalized Estimating Equations (GEEs) to estimate the parameters of our regression model. The approach is illustrated using a representative sample from a German LTC portfolio.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 393

Subject
Markovian Multi-State Model
Transition Probabilities
Aalen-Johansen Estimator
Pseudo-Values
GLM
GEE
LTC
Premium

Event
Geistige Schöpfung
(who)
Helms, Florian
Czado, Claudia
Gschlößl, Susanne
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2004

DOI
doi:10.5282/ubm/epub.1763
Handle
URN
urn:nbn:de:bvb:19-epub-1763-2
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Helms, Florian
  • Czado, Claudia
  • Gschlößl, Susanne
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2004

Other Objects (12)