Physics‐Informed Deep‐Learning For Elasticity: Forward, Inverse, and Mixed Problems

Abstract: Elastography is a medical imaging technique used to measure the elasticity of tissues by comparing ultrasound signals before and after a light compression. The lateral resolution of ultrasound is much inferior to the axial resolution. Current elastography methods generally require both axial and lateral displacement components, making them less effective for clinical applications. Additionally, these methods often rely on the assumption of material incompressibility, which can lead to inaccurate elasticity reconstruction as no materials are truly incompressible. To address these challenges, a new physics‐informed deep‐learning method for elastography is proposed. This new method integrates a displacement network and an elasticity network to reconstruct the Young's modulus field of a heterogeneous object based on only a measured axial displacement field. It also allows for the removal of the assumption of material incompressibility, enabling the reconstruction of both Young's modulus and Poisson's ratio fields simultaneously. The authors demonstrate that using multiple measurements can mitigate the potential error introduced by the “eggshell” effect, in which the presence of stiff material prevents the generation of strain in soft material. These improvements make this new method a valuable tool for a wide range of applications in medical imaging, materials characterization, and beyond.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Physics‐Informed Deep‐Learning For Elasticity: Forward, Inverse, and Mixed Problems ; day:24 ; month:04 ; year:2023 ; extent:11
Advanced science ; (24.04.2023) (gesamt 11)

Urheber
Chen, Chun‐Teh
Gu, Grace X.

DOI
10.1002/advs.202300439
URN
urn:nbn:de:101:1-2023042515332639649594
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:49 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chen, Chun‐Teh
  • Gu, Grace X.

Ähnliche Objekte (12)