Arbeitspapier

Improving the pricing of options: a neural network approach

In this paper we apply statistical inference techniques to build neural network models which are able to explain the prices of call options written on the German stock index DAX. By testing for the explanatory power of several input variables serving as network inputs, some insight into the pricing process of the option market is obtained. The results indicate that statistical specification strategies lead to parsimonious networks which have a superior out-of-sample performance when compared to the Black/Scholes model. We further validate our results by providing plausible hedge parameters.

Language
Englisch

Bibliographic citation
Series: ZEW Discussion Papers ; No. 96-04

Classification
Wirtschaft
Subject
Option Pricing
Neural Networks
Statistical Inference
Model Selection
Optionspreistheorie
Neuronale Netze
Theorie

Event
Geistige Schöpfung
(who)
Anders, Ulrich
Korn, Olaf
Schmitt, Christian
Event
Veröffentlichung
(who)
Zentrum für Europäische Wirtschaftsforschung (ZEW)
ZBW – Leibniz Information Centre for Economics
(where)
Mannheim
(when)
1996

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Anders, Ulrich
  • Korn, Olaf
  • Schmitt, Christian
  • Zentrum für Europäische Wirtschaftsforschung (ZEW)
  • ZBW – Leibniz Information Centre for Economics

Time of origin

  • 1996

Other Objects (12)