Advanced Deep Learning‐Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites
The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five‐phase MMC is performed by synchrotron X‐ray computed tomography (SXCT). A workflow for advanced deep learning‐based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U‐net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Advanced Deep Learning‐Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites ; volume:22 ; number:4 ; year:2020 ; extent:6
Advanced engineering materials ; 22, Heft 4 (2020) (gesamt 6)
- Creator
-
Evsevleev, Sergei
Paciornik, Sidnei
Bruno, Giovanni
- DOI
-
10.1002/adem.201901197
- URN
-
urn:nbn:de:101:1-2022061807025583332067
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:38 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Evsevleev, Sergei
- Paciornik, Sidnei
- Bruno, Giovanni