Advanced Deep Learning‐Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites

The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five‐phase MMC is performed by synchrotron X‐ray computed tomography (SXCT). A workflow for advanced deep learning‐based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U‐net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Advanced Deep Learning‐Based 3D Microstructural Characterization of Multiphase Metal Matrix Composites ; volume:22 ; number:4 ; year:2020 ; extent:6
Advanced engineering materials ; 22, Heft 4 (2020) (gesamt 6)

Creator
Evsevleev, Sergei
Paciornik, Sidnei
Bruno, Giovanni

DOI
10.1002/adem.201901197
URN
urn:nbn:de:101:1-2022061807025583332067
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:38 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Evsevleev, Sergei
  • Paciornik, Sidnei
  • Bruno, Giovanni

Other Objects (12)