Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis

Abstract: We present a novel membrane electrode assembly (MEA) fabrication method for proton exchange membrane water electrolysis (PEMWE). Inspired by previous work on PEM fuel cells (PEMFCs), we fabricated PEMWE-MEAs via direct membrane deposition (DMD). DMD-MEAs were fabricated by spray coating the membrane directly onto the cathode electrode – in this case, a carbon cloth substrate with microporous layer coated with Pt/C. The complete DMD-MEAs consisted of the membrane-cathode compound assembled with an anode electrode, which is a porous titanium fiber substrate coated with IrO2. Polarization experiments of DMD-MEAs show promising results: In comparison to a reference catalyst coated membrane (CCM) and a porous transport electrode (PTE) type MEA using a freestanding Nafion 117 membrane, we found very good electrochemical performances for DMD-MEAs. DMD-MEAs show slightly higher activation losses than the reference CCM. However, DMD-MEAs seem to exhibit reduced ohmic and mass transport losses compared to those manufactured using the CCM approach. Compared to the PTE-type reference DMD shows improvements for all three loss mechanisms. Similar as for PEMFCs, DMD may allow for a simplified fabrication route and higher degree of design freedom in PEMWE-MEA manufacturing due to the simple layer by layer fabrication approach

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Electrochemistry communications. - 110 (2020) , 106640, ISSN: 1388-2481

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator

DOI
10.1016/j.elecom.2019.106640
URN
urn:nbn:de:bsz:25-freidok-2597531
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:34 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)