Arbeitspapier

Priority to Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium

We investigate heterogenous employment effects of Flemish training programmes. Based on administrative individual data, we analyse programme effects at various aggregation levels using Modified Causal Forests (MCF), a causal machine learning estimator for multiple programmes. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and types of unemployed. Simulations show that assigning unemployed to programmes that maximise individual gains as identified in our estimation can considerably improve effectiveness. Simplified rules, such as one giving priority to unemployed with low employability, mostly recent migrants, lead to about half of the gains obtained by more sophisticated rules.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 12875

Klassifikation
Wirtschaft
Mobility, Unemployment, and Vacancies: Public Policy
Thema
policy evaluation
active labour market policy
causal machine learning
modified causal forest
conditional average treatment effects

Ereignis
Geistige Schöpfung
(wer)
Cockx, Bart
Lechner, Michael
Bollens, Joost
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cockx, Bart
  • Lechner, Michael
  • Bollens, Joost
  • Institute of Labor Economics (IZA)

Entstanden

  • 2019

Ähnliche Objekte (12)