Arbeitspapier
Priority to Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium
We investigate heterogenous employment effects of Flemish training programmes. Based on administrative individual data, we analyse programme effects at various aggregation levels using Modified Causal Forests (MCF), a causal machine learning estimator for multiple programmes. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and types of unemployed. Simulations show that assigning unemployed to programmes that maximise individual gains as identified in our estimation can considerably improve effectiveness. Simplified rules, such as one giving priority to unemployed with low employability, mostly recent migrants, lead to about half of the gains obtained by more sophisticated rules.
- Sprache
-
Englisch
- Erschienen in
-
Series: IZA Discussion Papers ; No. 12875
- Klassifikation
-
Wirtschaft
Mobility, Unemployment, and Vacancies: Public Policy
- Thema
-
policy evaluation
active labour market policy
causal machine learning
modified causal forest
conditional average treatment effects
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cockx, Bart
Lechner, Michael
Bollens, Joost
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute of Labor Economics (IZA)
- (wo)
-
Bonn
- (wann)
-
2019
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cockx, Bart
- Lechner, Michael
- Bollens, Joost
- Institute of Labor Economics (IZA)
Entstanden
- 2019