Arbeitspapier
Priority of Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium
Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that “black-box” rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20% more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70% of this gain.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 8297
- Klassifikation
-
Wirtschaft
Mobility, Unemployment, and Vacancies: Public Policy
- Thema
-
policy evaluation
active labour market policy
causal machine learning
modified causal forest
conditional average treatment effects
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Cockx, Bart
Lechner, Michael
Bollens, Joost
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and Ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Cockx, Bart
- Lechner, Michael
- Bollens, Joost
- Center for Economic Studies and Ifo Institute (CESifo)
Entstanden
- 2020