Arbeitspapier

Priority of Unemployed Immigrants? A Causal Machine Learning Evaluation of Training in Belgium

Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that “black-box” rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20% more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70% of this gain.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 8297

Klassifikation
Wirtschaft
Mobility, Unemployment, and Vacancies: Public Policy
Thema
policy evaluation
active labour market policy
causal machine learning
modified causal forest
conditional average treatment effects

Ereignis
Geistige Schöpfung
(wer)
Cockx, Bart
Lechner, Michael
Bollens, Joost
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and Ifo Institute (CESifo)
(wo)
Munich
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cockx, Bart
  • Lechner, Michael
  • Bollens, Joost
  • Center for Economic Studies and Ifo Institute (CESifo)

Entstanden

  • 2020

Ähnliche Objekte (12)