Density and Extension of Differentiable Functions on Metric Measure Spaces
Abstract: We consider vector valued mappings defined on metric measure spaces with a measurable differentiable structure and study both approximations by nicer mappings and regular extensions of the given mappings when defined on closed subsets. Therefore, we propose a first approach to these problems, largely studied on Euclidean and Banach spaces during the last century, for first order differentiable functions de-fined on these metric measure spaces.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Density and Extension of Differentiable Functions on Metric Measure Spaces ; volume:9 ; number:1 ; year:2021 ; pages:254-268 ; extent:15
Analysis and geometry in metric spaces ; 9, Heft 1 (2021), 254-268 (gesamt 15)
- Creator
-
García, Rafael Espínola
González, Luis Sánchez
- DOI
-
10.1515/agms-2020-0130
- URN
-
urn:nbn:de:101:1-2024041116394768265238
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:46 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- García, Rafael Espínola
- González, Luis Sánchez