Density and Extension of Differentiable Functions on Metric Measure Spaces

Abstract: We consider vector valued mappings defined on metric measure spaces with a measurable differentiable structure and study both approximations by nicer mappings and regular extensions of the given mappings when defined on closed subsets. Therefore, we propose a first approach to these problems, largely studied on Euclidean and Banach spaces during the last century, for first order differentiable functions de-fined on these metric measure spaces.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Density and Extension of Differentiable Functions on Metric Measure Spaces ; volume:9 ; number:1 ; year:2021 ; pages:254-268 ; extent:15
Analysis and geometry in metric spaces ; 9, Heft 1 (2021), 254-268 (gesamt 15)

Creator
García, Rafael Espínola
González, Luis Sánchez

DOI
10.1515/agms-2020-0130
URN
urn:nbn:de:101:1-2024041116394768265238
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:46 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • García, Rafael Espínola
  • González, Luis Sánchez

Other Objects (12)