Arbeitspapier

Bayesian and adaptive optimal policy under model uncertainty

We study the problem of a policymaker who seeks to set policy optimally in an economy where the true economic structure is unobserved, and policymakers optimally learn from their observations of the economy. This is a classic problem of learning and control, variants of which have been studied in the past, but little with forward-looking variables which are a key component of modern policy-relevant models. As in most Bayesian learning problems, the optimal policy typically includes an experimentation component reflecting the endogeneity of information. We develop algorithms to solve numerically for the Bayesian optimal policy (BOP). However the BOP is only feasible in relatively small models, and thus we also consider a simpler specification we term adaptive optimal policy (AOP) which allows policymakers to update their beliefs but shortcuts the experimentation motive. In our setting, the AOP is significantly easier to compute, and in many cases provides a good approximation to the BOP. We provide a simple example to illustrate the role of learning and experimentation in an MJLQ framework.

Sprache
Englisch

Erschienen in
Series: CFS Working Paper ; No. 2007/11

Klassifikation
Wirtschaft
Monetary Systems; Standards; Regimes; Government and the Monetary System; Payment Systems
Monetary Policy
Central Banks and Their Policies
Thema
Optimal Monetary Policy
Learning
Recursive Saddlepoint Method
Politische Entscheidung
Entscheidung bei Unsicherheit
Lernen
Informationsbeschaffung
Theorie

Ereignis
Geistige Schöpfung
(wer)
Svensson, Lars E. O.
Williams, Noah
Ereignis
Veröffentlichung
(wer)
Goethe University Frankfurt, Center for Financial Studies (CFS)
(wo)
Frankfurt a. M.
(wann)
2006

Handle
URN
urn:nbn:de:hebis:30-38218
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Svensson, Lars E. O.
  • Williams, Noah
  • Goethe University Frankfurt, Center for Financial Studies (CFS)

Entstanden

  • 2006

Ähnliche Objekte (12)