On a theorem by A.S. Cherny for semilinear stochastic partial differential equations
Abstract: We consider analytically weak solutions to semilinear stochastic partial differential equations with non-anticipating coefficients driven by a cylindrical Brownian motion. The solutions are allowed to take values in Banach spaces. We show that weak uniqueness is equivalent to weak joint uniqueness, and thereby generalize a theorem by A.S. Cherny to an infinite dimensional setting. Our proof for the technical key step is different from Cherny’s and uses cylindrical martingale problems. As an application, we deduce a dual version of the Yamada–Watanabe theorem, i.e. we show that strong existence and weak uniqueness imply weak existence and strong uniqueness
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Journal of theoretical probability. - 35, 3 (2022) , 2052-2067, ISSN: 1572-9230
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2022
- Urheber
- DOI
-
10.1007/s10959-021-01107-3
- URN
-
urn:nbn:de:bsz:25-freidok-2263918
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:54 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Criens, David
- Ritter, Moritz
- Universität
Entstanden
- 2022