Artikel

Modeling and forecasting US presidential election using learning algorithms

The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president's approval rate, and others are considered in a stepwise regression to identify significant variables. The president's approval rate is identified as the most significant variable, based on which eight other variables are identified and considered in the model development. Preprocessing methods are applied to prepare the data for the learning algorithms. The proposed procedure significantly increases the accuracy of the model by 50%. The learning algorithms (ANN and SVR) proved to be superior to linear regression based on each method's calculated performance measures. The SVR model is identified as the most accurate model among the other models as this model successfully predicted the outcome of the election in the last three elections (2004, 2008, and 2012). The proposed approach significantly increases the accuracy of the forecast.

Sprache
Englisch

Erschienen in
Journal: Journal of Industrial Engineering International ; ISSN: 2251-712X ; Volume: 14 ; Year: 2018 ; Issue: 3 ; Pages: 491-500 ; Heidelberg: Springer

Klassifikation
Management
Thema
Presidential election
Forecasting
Artificial neural network
Support vector regression
Linear regression

Ereignis
Geistige Schöpfung
(wer)
Zolghadr, Mohammad
Niaki, Seyed Armin Akhavan
Niaki, S. T. A.
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2018

DOI
doi:10.1007/s40092-017-0238-2
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Zolghadr, Mohammad
  • Niaki, Seyed Armin Akhavan
  • Niaki, S. T. A.
  • Springer

Entstanden

  • 2018

Ähnliche Objekte (12)