Konferenzbeitrag
Automatic Food Categorization from Large Unlabeled Corpora and Its Impact on Relation Extraction
We present a weakly-supervised induction method to assign semantic information to food items. We consider two tasks of categorizations being food-type classification and the distinction of whether a food item is composite or not. The categorizations are induced by a graph-based algorithm applied on a large unlabeled domain-specific corpus. We show that the usage of a domain-specific corpus is vital. We do not only outperform a manually designed open-domain ontology but also prove the usefulness of these categorizations in relation extraction, outperforming state-of-the-art features that include syntactic information and Brown clustering.
- Sprache
-
Englisch
- Thema
-
Computerlinguistik
Korpus <Linguistik>
Text Mining
Maschinelles Lernen
Lebensmittel
Sprache
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Wiegand, Michael
Roth, Benjamin
Klakow, Dietrich
- Ereignis
-
Veröffentlichung
- (wer)
-
Stroudsburg, PA : Association for Computational Linguistics
- (wann)
-
2019-02-05
- URN
-
urn:nbn:de:bsz:mh39-84696
- Letzte Aktualisierung
-
06.03.2025, 09:00 MEZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Wiegand, Michael
- Roth, Benjamin
- Klakow, Dietrich
- Stroudsburg, PA : Association for Computational Linguistics
Entstanden
- 2019-02-05