Arbeitspapier
PLS dimension reduction for classification of microarray data
PLS dimension reduction is known to give good prediction accuracy in the context of classification with high-dimensional microarray data. In this paper, PLS is compared with some of the best state-of-the-art classification methods. In addition, a simple procedure to choose the number of components is suggested. The connection between PLS dimension reduction and gene selection is examined and a property of the first PLS component for binary classification is proven. PLS can also be used as a visualization tool for high-dimensional data in the classification framework. The whole study is based on 9 real microarray cancer data sets.
- Language
-
Englisch
- Bibliographic citation
-
Series: Discussion Paper ; No. 392
- Event
-
Geistige Schöpfung
- (who)
-
Boulesteix, Anne-Laure
- Event
-
Veröffentlichung
- (who)
-
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
- (where)
-
München
- (when)
-
2004
- DOI
-
doi:10.5282/ubm/epub.1762
- Handle
- URN
-
urn:nbn:de:bvb:19-epub-1762-7
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Boulesteix, Anne-Laure
- Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
Time of origin
- 2004