Arbeitspapier

PLS dimension reduction for classification of microarray data

PLS dimension reduction is known to give good prediction accuracy in the context of classification with high-dimensional microarray data. In this paper, PLS is compared with some of the best state-of-the-art classification methods. In addition, a simple procedure to choose the number of components is suggested. The connection between PLS dimension reduction and gene selection is examined and a property of the first PLS component for binary classification is proven. PLS can also be used as a visualization tool for high-dimensional data in the classification framework. The whole study is based on 9 real microarray cancer data sets.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 392

Event
Geistige Schöpfung
(who)
Boulesteix, Anne-Laure
Event
Veröffentlichung
(who)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(where)
München
(when)
2004

DOI
doi:10.5282/ubm/epub.1762
Handle
URN
urn:nbn:de:bvb:19-epub-1762-7
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Boulesteix, Anne-Laure
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Time of origin

  • 2004

Other Objects (12)