Skeleton‐Guided Action Recognition with Multistream 3D Convolutional Neural Network for Elderly‐Care Robot

With the arrival of a global aging society, elderly‐care robots are becoming more and more attractive and can provide better caring services through action recognition. This article presents a skeleton‐guided action recognition framework with multistream 3D convolutional neural network. Two parallel dual‐stream lightweight networks are proposed to enhance the feature extraction ability of human action and meanwhile reduce computation. Two different modes of skeleton input video are constructed to improve the recognition accuracy by decision fusion. The backbone networks adopt Resnet‐18, the feature fusion layer and sliding window mechanism are both designed, and two cross‐entropy losses are used to supervise their training. A dataset (named elder care action recognition (EC‐AR)) with different categories of action is built. The experimental results on HMDB‐51 and EC‐AR datasets both demonstrate that the proposed framework outperforms the existing methods. The developed method is also applied to a prototype of elderly‐care robots, and the test results in home scenarios show that it still has high recognition accuracy and good real‐time performance.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Skeleton‐Guided Action Recognition with Multistream 3D Convolutional Neural Network for Elderly‐Care Robot ; day:21 ; month:09 ; year:2023 ; extent:11
Advanced intelligent systems ; (21.09.2023) (gesamt 11)

Urheber
Zhang, Dawei
Zhang, Yanmin
Zhou, Meng

DOI
10.1002/aisy.202300326
URN
urn:nbn:de:101:1-2023092215054135220156
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:48 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Zhang, Dawei
  • Zhang, Yanmin
  • Zhou, Meng

Ähnliche Objekte (12)