Hochschulschrift

Comparison of the categories of motives defined by Voevodsky and Nori

Zusammenfassung: In this thesis we compare V. Voevodsky's geometric motives to the derived category of M. Nori's abelian category of mixed motives by constructing a triangulated tensor functor between them. It will be compatible with the Betti realizations on both sides. We allow an arbitrary noetherian ring of coefficients, but require it to be a field or a Dedekind domain for the tensor structure on derived Nori motives to exist.There are three key ingredients: we present a theory of Nisnevich covers on finite acyclic diagrams of finite correspondences, explain, following D. Rydh, how to interpret finite correspondences as multivalued morphisms and elaborate on M. Nori's cohomological cell structures. For the first two, we will be working over an arbitrary regular scheme, but the last one will require that we restrict ourselves to a subfield of the complex numbers.On the way we also show that smooth commutative group schemes over a normal base automatically admit transfers, generalizing a result by M. Spiess and T. Szamuely

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Albert-Ludwigs-Universität Freiburg, Dissertation, 2016

Klassifikation
Mathematik
Schlagwort
Algebraische Geometrie
Arithmetik
Arithmetische Geometrie

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2016
Urheber
Beteiligte Personen und Organisationen

DOI
10.6094/UNIFR/11178
URN
urn:nbn:de:bsz:25-freidok-111782
Rechteinformation
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:52 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Hochschulschrift

Beteiligte

Entstanden

  • 2016

Ähnliche Objekte (12)