Arbeitspapier

Extending extended logistic regression to effectively utilize the ensemble spread

To achieve well calibrated probabilistic forecasts, ensemble forecasts often need to be statistically post-processed. One recent ensemble-calibration method is extended logistic regression which extends the popular logistic regression to yield full probability distribution forecasts. Although the purpose of this method is to post-process ensemble forecasts, mostly only the ensemble mean is used as predictor variable, whereas the ensemble spread is neglected because it does not improve the forecasts. In this study we show that when simply used as ordinary predictor variable in extended logistic regression, the ensemble spread only affects the location but not the variance of the predictive distribution. Uncertainty information contained in the ensemble spread is therefore not utilized appropriately. To solve this drawback we propose a simple new approach where the ensemble spread is directly used to predict the dispersion of the predictive distribution. With wind speed data and ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) we show that using this approach, the ensemble spread can be used effectively to improve forecasts from extended logistic regression.

Sprache
Englisch

Erschienen in
Series: Working Papers in Economics and Statistics ; No. 2013-21

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Alternative Energy Sources
Thema
probabilistic forecasting
extended logistic regression
heteroskedasticity
ensemble spread

Ereignis
Geistige Schöpfung
(wer)
Messner, Jakob W.
Mayr, Georg J.
Zeileis, Achim
Wilks, Daniel S.
Ereignis
Veröffentlichung
(wer)
University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)
(wo)
Innsbruck
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Messner, Jakob W.
  • Mayr, Georg J.
  • Zeileis, Achim
  • Wilks, Daniel S.
  • University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)

Entstanden

  • 2013

Ähnliche Objekte (12)