Exploring hafnium oxide's potential for passivating contacts for silicon solar cells

Abstract: We investigate the potential of ultra-thin HfO2 films grown by atomic layer deposition for passivating contacts to silicon focusing on variations in film thickness and post-deposition annealing temperature. A peak in passivation quality – as assessed by carrier lifetime measurements – is reported for 2.2 nm thick films annealed at 475 °C, for which a surface recombination velocity <1 cm/s is determined. For films <2.2 nm thick, there is a marked decrease in passivation quality. X-ray diffraction highlights a change from crystallised monoclinic to amorphous HfO2 as film thickness decreases from 12 nm to 2.2 nm. Kelvin probe results indicate that as-deposited 2.2–12 nm films have similar effective work functions, although the work function of 1 nm films is considerably lower. Upon post-deposition annealing in vacuum, all films exhibit a reduction in effective work function at temperatures coincident with the onset of passivation in air-annealed samples. An initial investigation into the contact resistivity in a passivating contact structure utilizing HfO2 reveals a strong post-deposition annealing temperature dependence, with the lowest resistance achieved below 375 °C, followed by a decrease in performance as temperature increases towards the optimal temperature for passivation (475 °C). Limitations of the contact structure used are discussed

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Solar energy materials & solar cells. - 259 (2023) , 112457, ISSN: 1879-3398

Klassifikation
Elektrotechnik, Elektronik

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Wratten, Ailish
Pain, Sophie L.
Yadav, Anup
Khorani, Edris
Niewelt, Tim
Black, Lachlan E.
Bartholazzi, Gabriel
Walker, David Johannes
Grant, N.E
Murphy, John D.

DOI
10.1016/j.solmat.2023.112457
URN
urn:nbn:de:bsz:25-freidok-2541388
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:54 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Wratten, Ailish
  • Pain, Sophie L.
  • Yadav, Anup
  • Khorani, Edris
  • Niewelt, Tim
  • Black, Lachlan E.
  • Bartholazzi, Gabriel
  • Walker, David Johannes
  • Grant, N.E
  • Murphy, John D.
  • Universität

Entstanden

  • 2024

Ähnliche Objekte (12)