Arbeitspapier

Impact of public news sentiment on stock market index return and volatility

Recent advances in natural language processing have contributed to the development of market sentiment measures through text content analysis in news providers and social media. The effectiveness of these sentiment variables depends on the implemented techniques and the type of source on which they are based. In this paper, we investigate the impact of the release of public financial news on the S&P 500. Using automatic labeling techniques based on either stock index returns or dictionaries, we apply a classification problem based on long short-term memory neural networks to extract alternative proxies of investor sentiment. Our findings provide evidence that there exists an impact of those sentiments in the market on a 20-minute time frame. We find that dictionary-based sentiment provides meaningful results with respect to those based on stock index returns, which partly fails in the mapping process between news and financial returns.

Sprache
Englisch

Erschienen in
Series: SAFE Working Paper ; No. 322

Klassifikation
Wirtschaft
Information and Market Efficiency; Event Studies; Insider Trading
Financial Forecasting and Simulation
Neural Networks and Related Topics
Computational Techniques; Simulation Modeling
Thema
Public financial news
Stock market
NLP
Dictionary
LSTM neural networks
Investor sentiment
S&P 500

Ereignis
Geistige Schöpfung
(wer)
Anese, Gianluca
Corazza, Marco
Costola, Michele
Pelizzon, Loriana
Ereignis
Veröffentlichung
(wer)
Leibniz Institute for Financial Research SAFE
(wo)
Frankfurt a. M.
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Anese, Gianluca
  • Corazza, Marco
  • Costola, Michele
  • Pelizzon, Loriana
  • Leibniz Institute for Financial Research SAFE

Entstanden

  • 2021

Ähnliche Objekte (12)