Arbeitspapier

Inference in weak factor models

In this paper, we consider statistical inference for high-dimensional approximate factor models. We posit a weak factor structure, in which the factor loading matrix can be sparse and the signal eigenvalues may diverge more slowly than the cross-sectional dimension, N. We propose a novel inferential procedure to decide whether each component of the factor loadings is zero or not, and prove that this controls the false discovery rate (FDR) below a pre-assigned level, while the power tends to unity. This "factor selection" procedure is primarily based on a de-sparsified (or debiased) version of the WF-SOFAR estimator of Uematsu and Yamagata (2020), but is also applicable to the principal component (PC) estimator. After the factor selection, the re-sparsified WFSOFAR and sparsified PC estimators are proposed and their consistency is established. Finite sample evidence supports the theoretical results. We apply our procedure to the FRED-MD macroeconomic and financial data, consisting of 128 series from June 1999 to May 2019. The results strongly suggest the existence of sparse factor loadings and exhibit a clear association of each of the extracted factors with a group of macroeconomic variables. In particular, we find a price factor, housing factor, output and income factor, and a money, credit and stock market factor.

Sprache
Englisch

Erschienen in
Series: ISER Discussion Paper ; No. 1080

Klassifikation
Wirtschaft
Thema
Approximate factor models
Debiased SOFAR estimator
Multiple testing
FDRand Power
Re-sparsification

Ereignis
Geistige Schöpfung
(wer)
Uematsu, Yoshimasa
Yamagata, Takashi
Ereignis
Veröffentlichung
(wer)
Osaka University, Institute of Social and Economic Research (ISER)
(wo)
Osaka
(wann)
2020

Handle
Letzte Aktualisierung
24.05.3025, 12:41 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Uematsu, Yoshimasa
  • Yamagata, Takashi
  • Osaka University, Institute of Social and Economic Research (ISER)

Entstanden

  • 2020

Ähnliche Objekte (12)