Certified SAT solving with GPU accelerated inprocessing

Abstract: Since 2013, the leading SAT solvers in SAT competitions all use inprocessing, which, unlike preprocessing, interleaves search with simplifications. However, inprocessing is typically a performance bottleneck, in particular for hard or large formulas. In this work, we introduce the first attempt to parallelize inprocessing on GPU architectures. As one of the main challenges in GPU programming is memory locality, we present new compact data structures and devise a data-parallel garbage collector. It runs in parallel on the GPU to reduce memory consumption and improve memory locality. Our new parallel variable elimination algorithm is roughly twice as fast as previous work. Moreover, we augment the variable elimination with the first parallel algorithm for functional dependency extraction in an attempt to find more logical gates to eliminate that cannot be found with syntactic approaches. We present a novel algorithm to generate clausal proofs in parallel to validate all simplifications running on the GPU besides the CDCL search, giving high credibility to our solver and its use in critical applications such as model checkers. In experiments, our new solver PARAFROST solves numerous benchmarks faster on the GPU than its sequential counterparts. With functional dependency extraction, inprocessing in PARAFROST was more effective in reducing the solving time. Last but not least, all proofs generated by PARAFROST were successfully verified

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Formal methods in system design. - 62, 1-3 (2024) , 79-118, ISSN: 1572-8102

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber
Osama, Muhammad
Wijs, Anton
Biere, Armin
Beteiligte Personen und Organisationen

DOI
10.1007/s10703-023-00432-z
URN
urn:nbn:de:bsz:25-freidok-2393696
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:04 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)