Native Top‐Down Mass Spectrometry Reveals a Role for Interfacial Glycans on Therapeutic Cytokine and Hormone Assemblies

Abstract: Oligomerization and glycosylation modulate therapeutic glycoprotein stability and efficacy. The interplay between these two critical attributes on therapeutic glycoproteins, is however often hard to define. Here, we present a native top‐down mass spectrometry (MS) approach to assess the glycosylation status of therapeutic cytokine and hormone assemblies and relate interfacial glycan occupancy to complex stability. We found that interfacial O‐glycan stabilizes tumor necrosis factor‐α trimer. On the contrary, interferon‐β1a dimerization is independent of glycosylation. Moreover, we discovered a unique distribution of N‐glycans on the follicle‐stimulating hormone α subunit. We found that the interfacial N‐glycan, at Asn52 of the α subunit, interacts extensively with the β subunit to regulate the dimer assembly. Overall, we have exemplified a method to link glycosylation with assembly status, for cytokines and hormones, critical for informing optimal stability and bioavailability.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Native Top‐Down Mass Spectrometry Reveals a Role for Interfacial Glycans on Therapeutic Cytokine and Hormone Assemblies ; day:10 ; month:11 ; year:2022 ; extent:1
Angewandte Chemie ; (10.11.2022) (gesamt 1)

Creator
Wu, Di
Robinson, Carol V.

DOI
10.1002/ange.202213170
URN
urn:nbn:de:101:1-2022111114074981415701
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Wu, Di
  • Robinson, Carol V.

Other Objects (12)