Machine Learning Guided Discovery of Non‐Linear Optical Materials

Abstract: Nonlinear optical (NLO) materials are crucial in achieving desired frequencies in solid‐state lasers. So far, new NLO materials have been discovered using high‐throughput calculations or chemical intuition. This study demonstrates the effectiveness of utilizing a high refractive index as a proxy for a high second harmonic generation (SHG) coefficient. It also emphasizes the importance of hardness in screening balanced NLO materials. Two machine learning models are developed to predict refractive indices and Vickers hardness. By applying these models to the OQMD database, potential NLO candidates are identified based on non‐centrosymmetricity, refractive index, hardness value, and bandgap properties. These findings are validated using density functional theory (DFT) calculations. Notably, this approach successfully identifies several already established NLO materials, reinforcing the validity of the methodology.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Machine Learning Guided Discovery of Non‐Linear Optical Materials ; day:27 ; month:11 ; year:2024 ; extent:6
Advanced theory and simulations ; (27.11.2024) (gesamt 6)

Urheber
Mondal, Sownyak
Hammad, Raheel

DOI
10.1002/adts.202400463
URN
urn:nbn:de:101:1-2411271424380.160312066795
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Mondal, Sownyak
  • Hammad, Raheel

Ähnliche Objekte (12)