Scalar Curvature via Local Extent

Abstract: We give a metric characterization of the scalar curvature of a smooth Riemannian manifold, analyzing the maximal distance between (n + 1) points in infinitesimally small neighborhoods of a point. Since this characterization is purely in terms of the distance function, it could be used to approach the problem of defining the scalar curvature on a non-smooth metric space. In the second part we will discuss this issue, focusing in particular on Alexandrov spaces and surfaces with bounded integral curvature.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Scalar Curvature via Local Extent ; volume:6 ; number:1 ; year:2018 ; pages:146-164 ; extent:19
Analysis and geometry in metric spaces ; 6, Heft 1 (2018), 146-164 (gesamt 19)

Creator
Veronelli, Giona

DOI
10.1515/agms-2018-0008
URN
urn:nbn:de:101:1-2024041116321032695537
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:50 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Veronelli, Giona

Other Objects (12)