Scalar Curvature via Local Extent
Abstract: We give a metric characterization of the scalar curvature of a smooth Riemannian manifold, analyzing the maximal distance between (n + 1) points in infinitesimally small neighborhoods of a point. Since this characterization is purely in terms of the distance function, it could be used to approach the problem of defining the scalar curvature on a non-smooth metric space. In the second part we will discuss this issue, focusing in particular on Alexandrov spaces and surfaces with bounded integral curvature.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Scalar Curvature via Local Extent ; volume:6 ; number:1 ; year:2018 ; pages:146-164 ; extent:19
Analysis and geometry in metric spaces ; 6, Heft 1 (2018), 146-164 (gesamt 19)
- Creator
-
Veronelli, Giona
- DOI
-
10.1515/agms-2018-0008
- URN
-
urn:nbn:de:101:1-2024041116321032695537
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:50 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Veronelli, Giona