Arbeitspapier

Possibly nonstationary cross-validation

Cross-validation is the most common data-driven procedure for choosing smoothing parameters in nonparametric regression. For the case of kernel estimators with iid or strong mixing data, it is well-known that the bandwidth chosen by crossvalidation is optimal with respect to the average squared error and other performance measures. In this paper, we show that the cross-validated bandwidth continues to be optimal with respect to the average squared error even when the datagenerating process is a ß-recurrent Markov chain. This general class of processes covers stationary as well as nonstationary Markov chains. Hence, the proposed procedure adapts to the degree of recurrence, thereby freeing the researcher from the need to assume stationary (or nonstationary) before inference begins. We study finite sample performance in a Monte Carlo study. We conclude by demonstrating the practical usefulness of cross-validation in a highly-persistent environment, namely that of nonlinear predictive systems for market returns.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP11/16

Klassifikation
Wirtschaft
Thema
Bandwidth Selection
Recurrence
Predictive Regressions

Ereignis
Geistige Schöpfung
(wer)
Bandi, Federico M.
Corradi, Valentina
Wilhelm, Daniel
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2016

DOI
doi:10.1920/wp.cem.2016.1116
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bandi, Federico M.
  • Corradi, Valentina
  • Wilhelm, Daniel
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2016

Ähnliche Objekte (12)