AttentionPose: Attention-driven end-to-end model for precise 6D pose estimation

Abstract: Addressing the complex problem of 6D pose estimation from single RGB images is essential for robotics, augmented reality, and autonomous driving applications. The aim of this study is to overcome limitations in handling scenes with high object occlusion and clutter. We introduce an attention-driven end-to-end model that builds upon existing methods employing pixel-wise unit vectors and voting for object keypoints. Integrating attention mechanisms allows the model to focus computational resources on salient features, enhancing accuracy. Experimental results using the LINEMOD benchmark dataset demonstrate an accuracy rate of 99.73%, outperforming state-of-the-art approaches. The model also exhibits strong generalization capabilities, achieving an average accuracy of 97.36% on objects not included in the dataset. This work concludes that the attention mechanism significantly elevates the performance and robustness of 6D pose estimation, particularly in challenging environments, and opens new avenues for real-world applications.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
AttentionPose: Attention-driven end-to-end model for precise 6D pose estimation ; volume:32 ; number:1 ; year:2023 ; extent:16
Journal of intelligent systems ; 32, Heft 1 (2023) (gesamt 16)

Urheber
Rasheed, Mayada Abdalsalam
Farhan, Rabah Nori
Jasim, Wesam M.

DOI
10.1515/jisys-2023-0153
URN
urn:nbn:de:101:1-2023122113095702210548
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Rasheed, Mayada Abdalsalam
  • Farhan, Rabah Nori
  • Jasim, Wesam M.

Ähnliche Objekte (12)