Arbeitspapier

Bias-adjusted treatment effects under equal selection

In a recent contribution, Oster (2019) has proposed a method to generate bounds on treatment effects in the presence of unobservable confounders. The method can only be implemented if a crucial problem of non-uniqueness is addressed. In this paper I demonstrate that one of the proposed methods to address non-uniqueness that relies on computing bias-adjusted treatment effects under the assumption of equal selection on observables and unobservables, is problematic on several counts. First, additional assumptions, which cannot be justified on theoretical grounds, are needed to ensure a unique solution; second, the method will not work when estimate of the treatment effect declines with the addition of controls; and third, the solution, and therefore conclusions about bias, can change dramatically if we deviate from equal selection even by a small magnitude.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2021-05

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
treatment effect
omitted variable bias

Ereignis
Geistige Schöpfung
(wer)
Basu, Deepankar
Ereignis
Veröffentlichung
(wer)
University of Massachusetts, Department of Economics
(wo)
Amherst, MA
(wann)
2021

DOI
doi:10.7275/21977135
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Basu, Deepankar
  • University of Massachusetts, Department of Economics

Entstanden

  • 2021

Ähnliche Objekte (12)