Intramolecular Through‐Space Double‐Electron Transfer Between A Pair of Redox‐Active Guanidine Units Aligned by Dithiolate Bridges

Abstract: Using unconventional synthesis protocols, two redox‐active triguanidine units are connected by a dithiolate bridge, aligning the two redox‐active units in close proximity. The reduced, neutral and the tetracationic redox states with two dicationic triguanidine units are isolated and fully characterized. Then, the dicationic redox states are prepared by mixing the neutral and tetracationic molecules. At low temperatures, the dications are diamagnetic (singlet ground state) with two different triguanidine units (neutral and dicationic). At room temperature, the triplet state with two radical monocationic triguanidine units is populated. At low temperature (210 K), chemical exchange by intramolecular through‐space electron‐transfer between the two triguanidine units is evidenced by EXSY NMR spectroscopy. Intramolecular through‐space transfer of two electrons from the neutral to the dicationic triguanidine unit is accompanied by migration of the counterions in opposite direction. The rate of double‐electron transfer critically depends on the bridge. No electron‐transfer is measured in the absence of a bridge (in a mixture of one dicationic and one neutral triguanidine), and relatively slow electron transfer if the bridge does not allow the two triguanidine units to approach each other close enough. The results give detailed, quantitative insight into the factors that influence intramolecular through‐space double‐electron‐transfer processes.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Intramolecular Through‐Space Double‐Electron Transfer Between A Pair of Redox‐Active Guanidine Units Aligned by Dithiolate Bridges ; day:09 ; month:10 ; year:2023 ; extent:14
Chemistry - a European journal ; (09.10.2023) (gesamt 14)

Creator
Wild, Ute
Hübner, Olaf
Meiners, Paul
Kaifer, Elisabeth
Enders, Markus
Himmel, Hans-Jörg

DOI
10.1002/chem.202302418
URN
urn:nbn:de:101:1-2023101015152155606587
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:59 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)