Learning‐Based Damage Recovery for Healable Soft Electronic Skins

Natural agents display various adaptation strategies to damages, including damage assessment, localization, healing, and recalibration. This work investigates strategies by which a soft electronic skin can similarly preserve its sensitivity after multiple damages, combining material‐level healing with software‐level adaptation. Being manufactured entirely from self‐healing Diels–Alder matrix and composite fibers, the skin is capable of physically recovering from macroscopic damages. However, the simultaneous shifts in sensor fiber signals cannot be modeled using analytical approaches because the materials viscoelasticity and healing processes introduce significant nonlinearities and time‐variance into the skin's response. It is shown that machine learning of five‐layer networks after 5000 probes leads to highly sensitive models for touch localization with 2.3 mm position and 95% depth accuracy. Through health monitoring via probing, damage and partial recovery are localized. Although healing is often successful, insufficient recontact leads to limited recovery or complete loss of a fiber. In these cases, complete resampling and retraining recovers the networks’ full performance, regaining sensitivity, and further increasing the system's robustness. Transfer learning with a single frozen layer provides the ability to rapidly adapt with fewer than 200 probes.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Learning‐Based Damage Recovery for Healable Soft Electronic Skins ; day:31 ; month:10 ; year:2022 ; extent:14
Advanced intelligent systems ; (31.10.2022) (gesamt 14)

Urheber
Terryn, Seppe
Hardman, David
Thuruthel, Thomas George
Roels, Ellen
Sahraeeazartamar, Fatemeh
Iida, Fumiya

DOI
10.1002/aisy.202200115
URN
urn:nbn:de:101:1-2022110114083788056560
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:23 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Terryn, Seppe
  • Hardman, David
  • Thuruthel, Thomas George
  • Roels, Ellen
  • Sahraeeazartamar, Fatemeh
  • Iida, Fumiya

Ähnliche Objekte (12)