Artikel

Global asset allocation strategy using a hidden markov model

This study uses the hidden Markov model (HMM) to identify the phases of individual assets and proposes an investment strategy using price trends effectively. We conducted empirical analysis for 15 years from January 2004 to December 2018 on universes of global assets divided into 10 classes and the more detailed 22 classes. Both universes have been shown to have superior performance in strategy using HMM in common. By examining the change in the weight of the portfolio, the weight change between the asset classes occurs dynamically. This shows that HMM increases the weight of stocks when stock price rises and increases the weight of bonds when stock price falls. As a result of analyzing the performance, it was shown that the HMM effectively reflects the asset selection effect in Jensen's alpha, Fama's Net Selectivity and Treynor-Mazuy model. In addition, the strategy of the HMM has positive gamma value even in the Treynor-Mazuy model. Ultimately, HMM is expected to enable stable management compared to existing momentum strategies by having asset selection effect and market forecasting ability.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 12 ; Year: 2019 ; Issue: 4 ; Pages: 1-12 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
asset allocation
hidden markov model
price momentum

Ereignis
Geistige Schöpfung
(wer)
Kim, Eun-chong
Jeong, Han-wook
Lee, Nak-young
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/jrfm12040168
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kim, Eun-chong
  • Jeong, Han-wook
  • Lee, Nak-young
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)