Artikel

No arbitrage in continuous financial markets

We derive integral tests for the existence and absence of arbitrage in a financial market with one risky asset which is either modeled as stochastic exponential of an Itô process or a positive diffusion with Markov switching. In particular, we derive conditions for the existence of the minimal martingale measure. We also show that for Markov switching models the minimal martingale measure preserves the independence of the noise and we study how the minimal martingale measure can be modified to change the structure of the switching mechanism. Our main mathematical tools are new criteria for the martingale and strict local martingale property of certain stochastic exponentials.

Language
Englisch

Bibliographic citation
Journal: Mathematics and Financial Economics ; ISSN: 1862-9660 ; Volume: 14 ; Year: 2020 ; Issue: 3 ; Pages: 461-506 ; Berlin, Heidelberg: Springer

Classification
Wirtschaft
Structure and Scope of Government: General
Mathematical Methods
General Financial Markets: Other
Subject
No arbitrage
Financial bubble
Minimal martingale measure
Itô process
Switching diffusion
Stochastic exponential

Event
Geistige Schöpfung
(who)
Criens, David
Event
Veröffentlichung
(who)
Springer
(where)
Berlin, Heidelberg
(when)
2020

DOI
doi:10.1007/s11579-020-00262-1
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Criens, David
  • Springer

Time of origin

  • 2020

Other Objects (12)