Hierarchically Structured Allotropes of Phosphorus from Data‐Driven Exploration

Abstract: The discovery of materials is increasingly guided by quantum‐mechanical crystal‐structure prediction, but the structural complexity in bulk and nanoscale materials remains a bottleneck. Here we demonstrate how data‐driven approaches can vastly accelerate the search for complex structures, combining a machine‐learning (ML) model for the potential‐energy surface with efficient, fragment‐based searching. We use the characteristic building units observed in Hittorf's and fibrous phosphorus to seed stochastic (“random”) structure searches over hundreds of thousands of runs. Our study identifies a family of hierarchically structured allotropes based on a P8 cage as principal building unit, including one‐dimensional (1D) single and double helix structures, nanowires, and two‐dimensional (2D) phosphorene allotropes with square‐lattice and kagome topologies. These findings yield new insight into the intriguingly diverse structural chemistry of phosphorus, and they provide an example for how ML methods may, in the long run, be expected to accelerate the discovery of hierarchical nanostructures.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Hierarchically Structured Allotropes of Phosphorus from Data‐Driven Exploration ; volume:59 ; number:37 ; year:2020 ; pages:15880-15885 ; extent:6
Angewandte Chemie / International edition. International edition ; 59, Heft 37 (2020), 15880-15885 (gesamt 6)

Creator
Deringer, Volker L.
Pickard, Chris J.
Proserpio, Davide M.

DOI
10.1002/anie.202005031
URN
urn:nbn:de:101:1-2022061314232740122160
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)