Arbeitspapier

Smoothing-based initialization for learning-to-forecast algorithms

Under adaptive learning, recursive algorithms are proposed to represent how agents update their beliefs over time. For applied purposes these algorithms require initial estimates of agents perceived law of motion. Obtaining appropriate initial estimates can become prohibitive within the usual data availability restrictions of macroeconomics. To circumvent this issue we propose a new smoothing-based initialization routine that optimizes the use of a training sample of data to obtain initials consistent with the statistical properties of the learning algorithm. Our method is generically formulated to cover different specifications of the learning mechanism, such as the Least Squares and the Stochastic Gradient algorithms. Using simulations we show that our method is able to speed up the convergence of initial estimates in exchange for a higher computational cost.

Sprache
Englisch

Erschienen in
Series: KOF Working Papers ; No. 425

Klassifikation
Wirtschaft
Computational Techniques; Simulation Modeling
Expectations; Speculations
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
learning algorithms
initialization
smoothing
expectations

Ereignis
Geistige Schöpfung
(wer)
Berardi, Michele
Galimberti, Jaqueson K.
Ereignis
Veröffentlichung
(wer)
ETH Zurich, KOF Swiss Economic Institute
(wo)
Zurich
(wann)
2017

DOI
doi:10.3929/ethz-a-010820132
Handle
Letzte Aktualisierung
20.09.2024, 08:22 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Berardi, Michele
  • Galimberti, Jaqueson K.
  • ETH Zurich, KOF Swiss Economic Institute

Entstanden

  • 2017

Ähnliche Objekte (12)