Artikel
Multiple discrete endogenous variables in weakly-separable triangular models
We consider a model in which an outcome depends on two discrete treatment variables, where one treatment is given before the other. We formulate a three-equation triangular system with weak separability conditions. Without assuming assignment is random, we establish the identification of an average structural function using two-step matching. We also consider decomposing the effect of the first treatment into direct and indirect effects, which are shown to be identified by the proposed methodology. We allow for both of the treatment variables to be non-binary and do not appeal to an identification-at-infinity argument.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 1 ; Pages: 1-21 ; Basel: MDPI
- Classification
-
Wirtschaft
Econometrics
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
- Subject
-
nonparametric identification
discrete endogenous regressors
triangular models
- Event
-
Geistige Schöpfung
- (who)
-
Jun, Sung Jae
Pinkse, Joris
Xu, Haiqing
Yıldız, Neşe
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2016
- DOI
-
doi:10.3390/econometrics4010007
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Jun, Sung Jae
- Pinkse, Joris
- Xu, Haiqing
- Yıldız, Neşe
- MDPI
Time of origin
- 2016