Arbeitspapier

Generalised Anderson-Rubin statistic based inference in the presence of a singular moment variance matrix

The particular concern of this paper is the construction of a confidence region with pointwise asymptotically correct size for the true value of a parameter of interest based on the generalized Anderson-Rubin (GAR) statistic when the moment variance matrix is singular. The large sample behaviour of the GAR statistic is analysed using a Laurent series expansion around the points of moment variance singularity. Under a condition termed first order moment singularity the GAR statistic is shown to possess a limiting chi-square distribution on parameter sequences converging to the true parameter value. Violation, however, of this condition renders the GAR statistic unbounded asymptotically. The paper details an appropriate discretisation of the parameter space to implement a feasible GAR-based confidence region that contains the true parameter value with pointwise asymptotically correct size. Simulation evidence is provided that demonstrates the efficacy of the GAR-based approach to moment-based inference described in this paper.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP05/19

Klassifikation
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Model Construction and Estimation
Model Evaluation, Validation, and Selection
Thema
Laurent series expansion
moment indicator
parameter sequences
singular moment matrix

Ereignis
Geistige Schöpfung
(wer)
Grant, Nicky L.
Smith, Richard J.
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2019

DOI
doi:10.1920/wp.cem.2019.0519
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Grant, Nicky L.
  • Smith, Richard J.
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2019

Ähnliche Objekte (12)