Probability matching priors : higher order asymptotics

Probability matching priors, ensuring frequentist validity of posterior credible sets up to the desired order of asymptotics, are of substantial current interest. They can form the basis of an objective Bayesian analysis. In addition, they provide a route for obtaining accurate frequentist confidence sets, which are meaningful also to a Bayesian. This monograph presents, for the first time in book form, an up-to-date and comprehensive account of probability matching priors addressing the problems of both estimation and prediction. Apart from being useful to researchers, it can be the core of a one-semester graduate course in Bayesian asymptotics. Gauri Sankar Datta is a professor of statistics at the University of Georgia. He has published extensively in the fields of Bayesian analysis, likelihood inference, survey sampling, and multivariate analysis. Rahul Mukerjee is a professor of statistics at the Indian Institute of Management Calcutta. He co-authored three other research monographs, including A Calculus for Factorial Arrangements in this series. A fellow of the Institute of Mathematical Statistics, Dr. Mukerjee is on the editorial boards of several international journals. TOC:Introduction and the Shrinkage Argument * Matching Priors forPosterior Quantiles* Matching Priors for Distribution Functions * Matching Priors for Highest Posterior Density Regions * Matching Priors for Other Credible Regions * Matching Priors for Prediction

Standort
Deutsche Nationalbibliothek Frankfurt am Main
ISBN
038720329X
Maße
24 cm
Umfang
X, 127 S.
Sprache
Deutsch
Anmerkungen
Literaturverz. S. 117 - 124

Erschienen in
Lecture notes in statistics ; 178

Klassifikation
Mathematik
Schlagwort
Asymptotische Statistik
Bayes-Verfahren
A-priori-Verteilung

Ereignis
Veröffentlichung
(wo)
New York, Berlin, Heidelberg, Hong Kong, London, Milan, Paris, Tokyo
(wer)
Springer
(wann)
2004
Urheber
Datta, Gauri Sankar
Mukerjee, Rahul

Inhaltsverzeichnis
Rechteinformation
Bei diesem Objekt liegt nur das Inhaltsverzeichnis digital vor. Der Zugriff darauf ist unbeschränkt möglich.
Letzte Aktualisierung
11.06.2025, 14:08 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2004

Ähnliche Objekte (12)