Aethionema arabicum dimorphic seed trait resetting during transition to seedlings

Abstract: The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M− seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M− seeds, and IND fruits. The dimorphic seedlings derived from M+ and M− seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M− seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Frontiers in plant science. - 15 (2024) , 1358312, ISSN: 1664-462X

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator
Arshad, Waheed
Steinbrecher, Tina
Wilhelmsson, P. K. I.
Fernandez-Pozo, Noe
Pérez, Marta
Mérai, Zsuzsanna
Rensing, Stefan A.
Chandler, Jake O.
Leubner‐Metzger, Gerhard

DOI
10.3389/fpls.2024.1358312
URN
urn:nbn:de:bsz:25-freidok-2461946
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:52 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)